

$$=5\sqrt{3}$$

Simplify.

Additional Examples

Lesson 11-2

OBJECTIVE 2 EXAMPLE Simplify $8\sqrt{5} - \sqrt{45}$.

$$8\sqrt{5} - \sqrt{45} = 8\sqrt{5} + \sqrt{9 \cdot 5}$$
$$= 8\sqrt{5} - \sqrt{9} \cdot \sqrt{5}$$

 $=5\sqrt{5}$

$$= 8\sqrt{5} - 3\sqrt{5}$$
$$= (8 - 3)\sqrt{5}$$

9 is a perfect square and a factor of 45. Use the Multiplication Property of Square Roots. Simplify $\sqrt{9}$.

Use the Distributive Property to combine like terms.

Simplify.

$$\sqrt{5}(\sqrt{8}+9) = \sqrt{40}+9\sqrt{5}$$

$$=\sqrt{4} \cdot \sqrt{10} + 9\sqrt{5}$$

Use the Distributive Property.

Use the Multiplication Property of Square Roots.

$$= 2\sqrt{10} + 9\sqrt{5}$$

Simplify.

Operations with Radical Expressions

Lesson 11-2

Additional Examples

OBJECTIVE 5 EXAMPLE Simplify
$$\frac{8}{\sqrt{7} - \sqrt{3}}$$
.

$$= \frac{8}{\sqrt{7} - \sqrt{3}} \cdot \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} + \sqrt{3}}$$

$$= \frac{8(\sqrt{7} + \sqrt{3})}{7 - 3}$$
$$= \frac{8(\sqrt{7} + \sqrt{3})}{4}$$
$$= 2(\sqrt{7} + \sqrt{3})$$

 $= 2\sqrt{7} + 2\sqrt{3}$

Multiply the numerator and denominator by the conjugate of the denominator.

Multiply in the denominator.

Simplify the denominator.

Divide 8 and 4 by the common factor 4.

Simplify the expression.

Algebra 1

PEARSON

6 EXAMPLE A painting has a length : width ratio approximately equal to the golden ratio $(1 + \sqrt{5})$: 2. The length of the painting is 51 in. Find the exact width of the painting in simplest radical form. Then find the approximate width to the nearest inch.

Define: 51 = length of paintingx = width of painting

Relate: $(1 + \sqrt{5})$: 2 = length : width

Write: =
$$\frac{(1+\sqrt{5})}{2}$$
 $\frac{51}{x}$
 $x(1+\sqrt{5}) = 102$ Cross multiply.
 $\frac{x(1+\sqrt{5})}{(1+\sqrt{5})} = \frac{102}{(1+\sqrt{5})}$ Solve for x.

Operations with Radical Expressions

Lesson 11-2

OBJECTIVE

EXAMPLE

PEARSON Algebra 1

(continued) $x = \frac{102}{(1+\sqrt{5})} \cdot \frac{(1-\sqrt{5})}{(1-\sqrt{5})}$ $x = \frac{102(1 - \sqrt{5})}{1 - 5}$ $x = \frac{102(1 - \sqrt{5})}{-4}$ $x = \frac{-51(1-\sqrt{5})}{2}$ x = 31.51973343 $x \approx 32$

Multiply the numerator and the denominator by the conjugate of the denominator. Multiply in the denominator.

Simplify the denominator.

Divide 102 and –4 by the common factor -2.

Use a calculator.

The exact width of the painting is $\frac{-51(1-\sqrt{5})}{2}$ inches. The approximate width of the painting is 32 inches.

