

$$\sqrt{81} - 5 \stackrel{?}{=} 4$$
$$9 - 5 \stackrel{?}{=} 4$$
$$4 = 4 \checkmark$$

Substitute 81 for *x*.

OBJECTIVE

2

EXAMPLE On a roller coaster ride, your speed in a loop depends on the height of the hill you have just come down and the radius of the loop in feet. The equation $v = 8\sqrt{h-2r}$ gives the velocity v in feet per second of a car at the top of the loop.

The loop on a roller coaster ride has a radius of 18 ft. Your car has a velocity of 120 ft/s at the top of the loop. How high is the hill of the loop you have just come down before going into the loop?

Solve
$$v = 8\sqrt{h-2r}$$
 for h when $v = 120$ and $r = 18$.

$$120 = 8\sqrt{h-2(18)}$$
Substitute 120 for v and 18 for r .

$$\frac{120}{8} = \frac{8\sqrt{h-2(18)}}{8}$$
Divide each side by 8 to isolate the radical.

$$15 = \sqrt{h-36}$$
Simplify.

$$(15)^2 = (\sqrt{h-36})^2$$
Square both sides.

$$225 = h-36$$

$$261 = h$$
The hill is 261 ft high.

Solving Radical Equations

Lesson 11-3

Additional Examples

Vertexample
Solve
$$x = \sqrt{x + 12}$$
.
 $(x)^2 = (\sqrt{x + 12})^2$ Square both sides.
 $x^2 = x + 12$
 $x^2 - x - 12 = 0$ Simplify.
 $(x - 4)(x + 3) = 0$ Solve the quadratic equation by factoring.
 $(x - 4) = 0$ or $(x + 3) = 0$ Use the Zero-Product Property.
 $x = 4$ or $x = -3$ Solve for x .
Check: $x = \sqrt{x + 12}$
 $4 \stackrel{?}{=} \sqrt{4 + 12}$ $-3 \stackrel{?}{=} \sqrt{-3 + 12}$
 $4 = 4 \sqrt{-3} \neq 3$

The solution to the original equation is 4. The value –3 is an extraneous solution.

 $\sqrt{3x}$ + 8 = 2 has no solution.

