Reteaching 11-5

OBJECTIVE: Finding the sum of a finite and of an infinite geometric series

The sum of a finite geometric series is the sum of the terms of a geometric sequence. This sum can be found by using the formula

 $S_n = \frac{a_1(1 - r^n)}{1 - r}$, where a_1 is the first term, r is the common ratio, and n is the number of terms.

The sum of an infinite geometric series with |r| < 1 is found by using the formula $S = \frac{a_1}{1-r}$, where a_1 is the first term and r is the common ratio. If $|r| \ge 1$, then the series has no sum.

Example

Find the sum of the first ten terms of the series $8 + 16 + 32 + 64 + 128 + \dots$

$a_1 = 8$	-	a_1 is the first term in the series.
$r = \frac{16}{8} = \frac{32}{16} = \frac{64}{32} = \frac{128}{64} = 2$	~	Simplify the ratio formed by any two consecutive terms to find <i>r</i> .
n = 10	-	<i>n</i> is the number of terms in the series to be added together.
$S_{10} = \frac{8(1-2^{10})}{1-2}$	~	Substitute $a_1 = 8$, $r = 2$, and $n = 10$ into the formula for the sum of a finite geometric series.
$=\frac{8(-1023)}{-1}$		Simplify inside the parentheses.
= 8184		Simplify.

_____ Class_____ Date__

MATERIALS: None

Exercises

12

Evaluate the finite series for the specified number of terms.

Lesson 11-5 Reteaching

2. $8 + 2 + \frac{1}{2} + \frac{1}{8} + \dots; n = 5$ **1.** $3 + 12 + 48 + 192 + \dots; n = 6$ **4.** 10 + (-5) + $\frac{5}{2}$ + $\left(-\frac{5}{4}\right)$ + ...; n = 11 **3.** $-10 - 5 - 2.5 - 1.25 - \ldots; n = 7$

Evaluate each infinite geometric series.

5. 10 + 5 + 2.5 + ... **6.** $-1 + \frac{2}{11} - \frac{4}{121} + \dots$ **7.** $\frac{1}{4} + \frac{7}{32} + \frac{49}{256} + \dots$ **8.** $\frac{1}{2} - \frac{1}{5} + \frac{2}{25} - \dots$ **9.** $-\frac{1}{6} + \frac{1}{12} - \frac{1}{24} + \dots$ **10.** $20 + 16 + \frac{64}{5} + \dots$ **11.** $12 + 4 + \frac{4}{3} + \dots$ **12.** $\frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots$ **13.** $\frac{2}{3} + \frac{2}{15} + \frac{2}{75} + \dots$

Geometric Series

.

Name