CHAPTER 10

Limit Formulas

10.1 Definition of Limit

LIMIT OF A FUNCTION (INFORMAL DEFINITION)

The notation

$$\lim_{x \to c} f(x) = L$$

is read "the limit of f(x) as x approaches c is L" and means that the functional values f(x) can be made arbitrarily close to L by choosing x sufficiently close to c.

LIMIT OF A FUNCTION (FORMAL DEFINITION)

The limit statement

$$\lim_{x \to c} f(x) = L$$

means that for each $\epsilon>0$, there corresponds a number $\delta>0$ with the property that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - c| < \delta$

A FUNCTION DIVERGES TO INFINITY (INFORMAL DEFINITION)

A function f that increases or decreases without bound as x approaches c is said to **diverge to infinity** (∞) at c. We indicate this behavior by writing

(continued)

$$\lim_{x \to c} f(x) = +\infty$$

if x increases without bound and by

$$\lim_{x \to c} f(x) = -\infty$$

if x decreases without bound.

INFINITE LIMIT (FORMAL DEFINITION)

We write $\lim_{x\to c} f(x) = +\infty$ if, for any number N > 0 (no matter how large), it is possible to find a number $\delta > 0$ such that f(x) > N whenever $0 < |x - c| < \delta$.

LIMITS INVOLVING INFINITY

The limit statement $\lim_{x\to +\infty} f(x) = L$ means that for any number $\epsilon > 0$, there exists a number N_1 such that

$$|f(x) - L| < \epsilon \text{ whenever } x > N_1$$

for x in the domain of f. Similarly $\lim_{x\to -\infty} f(x) = M$ means that for any $\epsilon > 0$, there exists a number N_2 such that

$$|f(x) - M| < \epsilon$$
 whenever $x < N_2$

LIMIT OF A FUNCTION OF TWO VARIABLES (INFORMAL DEFINITION)

The notation

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

(continued)

means that the functional values f(x, y) can be made arbitrarily close to L by choosing the point (x, y) close to the point (x_0, y_0) .

LIMIT OF A FUNCTION OF TWO VARIABLES (FORMAL DEFINITION)

Suppose the point $P_0(x_0, y_0)$ has the property that every disk centered at P_0 contains at least one point in the domain of f other than P_0 itself. Then the number L is the **limit of** f at P if, for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x, y) - L| < \epsilon \text{ whenever } 0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$$

In this case, we write

$$\lim_{(x,y)\to(x_0,y_0)} f(x, y) = L$$

10.2 Rules of Limits

BASIC RULES

For any real numbers a and c, suppose the functions f and g both have limits at x = c. Suppose also that both $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$ exist.

Limit of a
$$\lim_{x \to c} k = k$$
 for any constant k

Scalar rule
$$\lim_{x \to c} [af(x)] = a \lim_{x \to c} f(x)$$

Sum rule
$$\lim[f(x) + g(x)] =$$

$$\lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

Difference rule
$$\lim [f(x) - g(x)] =$$

$$\lim_{x \to c} [f(x) - g(x)] =$$

$$\lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$

Linearity rule
$$\lim_{x\to+\infty} [af(x) + bg(x)] =$$

$$a \lim_{x \to +\infty} f(x) + b \lim_{x \to +\infty} g(x)$$

Product rules
$$\lim_{x \to c} [f(x)g(x)] = [\lim_{x \to c} f(x)][\lim_{x \to c} g(x)]$$

$$\lim_{x \to +\infty} [f(x)g(x)] = [\lim_{x \to +\infty} f(x)] [\lim_{x \to +\infty} g(x)]$$

Quotient rules
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{\substack{x \to c \\ x \to c}} \frac{f(x)}{g(x)} \text{ if } \lim_{x \to c} g(x) \neq 0$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to +\infty} f(x)}{\lim_{x \to +\infty} f(x)} \text{ if } \lim_{x \to +\infty} g(x) \neq 0$$

$$\lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n n \text{ is a}$$
rational number

Power rules
$$\lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n n \text{ is a}$$

$$\lim_{x \to +\infty} [f(x)]^n = [\lim_{x \to +\infty} f(x)]^n$$

Suppose $\lim_{x \to c} f(x)$ exists and $f(x) \ge 0$ Limit limitation theorem throughout an open interval containing the number c, except possibly at c itself. Then

$$\lim_{x \to c} f(x) \ge 0.$$

The squeeze rule If
$$g(x) \le f(x) \le h(x)$$
 for all x in an open interval containing c (except

open interval containing
$$c$$
 (except possibly at c itself) and if

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$$
then
$$\lim_{x \to c} f(x) = L.$$

then
$$\lim_{x \to c} f(x) = L$$

Limits to infinity
$$\lim_{x\to +\infty} \frac{A}{x^n} = 0$$
 and $\lim_{x\to -\infty} \frac{A}{x^n} = 0$

Infinite-limit theorem

If
$$\lim_{x \to c} f(x) = +\infty$$
 and $\lim_{x \to c} g(x) = A$, then

$$\lim_{x \to c} [f(x)g(x)] = +\infty \text{ and } \lim_{x \to c} \frac{f(x)}{g(x)} = +\infty \text{ if } A > 0$$

$$\lim_{x \to c} [f(x)g(x)] = -\infty \text{ and } \lim_{x \to c} \frac{f(x)}{g(x)} = -\infty \text{ if } A < 0$$

l'Hôpital's rule Let
$$f$$
 and g be differentiable functions on an open interval containing c (except possibly at c itself).

If
$$\lim_{x \to c} \frac{f(x)}{g(x)}$$
 produces an indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

provided that the limit on the right side exists.

TRIGONOMETRIC LIMITS

$$\lim_{\substack{x \to c}} \cos x = \cos c \quad \lim_{\substack{x \to c}} \sec x = \sec c$$

$$\lim_{\substack{x \to c}} \sin x = \sin c \quad \lim_{\substack{x \to c}} \csc x = \csc c$$

$$\lim_{\substack{x \to c}} \tan x = \tan c \quad \lim_{\substack{x \to c}} \cot x = \cot c$$

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin ax}{x} = \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

MISCELLANEOUS LIMITS

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e \qquad \lim_{n \to 0} (1+n)^{1/n} = e$$

$$\lim_{n \to +\infty} \left(1 + \frac{k}{n} \right)^n = e^k \quad \lim_{n \to +\infty} p \left(1 + \frac{1}{n} \right)^{nt} = pe^t$$

$$\lim_{n \to +\infty} n^{1/n} = 1$$

10.3 Limits of a Function of Two Variables

BASIC FORMULAS AND RULES FOR LIMITS OF A FUNCTION OF TWO VARIABLES

Suppose
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)$$
 and $\lim_{(x,y)\to(x_0,y_0)} g(x,y)$ both exist, with $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$ and $\lim_{(x,y)\to(x_0,y_0)} g(x,y) = M$. Then the following rules obtain:

Scalar rule
$$\lim_{(x,y)\to(x_0,y_0)} [af(x,y)]$$

$$= a \lim_{(x,y)\to(x_0,y_0)} f(x,y) = aL$$
Sum rule
$$\lim_{(x,y)\to(x_0,y_0)} [f+g](x,y)$$

$$= \left[\lim_{(x,y)\to(x_0,y_0)} f(x,y)\right] + \left[\lim_{(x,y)\to(x_0,y_0)} g(x,y)\right]$$

$$= L + M$$

Product rule
$$\lim_{(x,y)\to(x_0,y_0)} [fg](x,y)$$

$$= \left[\lim_{(x,y)\to(x_0,y_0)} f(x,y)\right] \left[\lim_{(x,y)\to(x_0,y_0)} g(x,y)\right]$$

$$= LM$$
Quotient rule
$$\lim_{(x,y)\to(x_0,y_0)} \left[\frac{f}{g}\right](x,y) = \frac{\lim_{(x,y)\to(x_0,y_0)} f(x,y)}{\lim_{(x,y)\to(x_0,y_0)} g(x,y)} = \frac{L}{M}$$
if $M \neq 0$

Substitution rule

If f(x, y) is a polynomial or a rational function, limits may be found by substituting for x and y (excluding values that cause division by zero).