
Interfacing C++ and Excel – Version 1.3 Kevin Lyman

The purpose of this document is to describe one method through which one can interface a simple C++

program with Microsoft Excel. The end result allows for data to be sent between the program and an

Excel spreadsheet. This method is especially helpful in that it allows for data generated in C++ to be

displayed graphically without the use of complicated programming. The process shown uses the

Microsoft Visual C++ 2005 compiler, as well as Microsoft Office Excel 2007. Note, the same can be

achieved using newer versions of either software with minor changes.

For this example, a C++ program will generate the values of the function Y=X
2
 for the domain 0 < X < 5.

An Excel spreadsheet will then be used to display these numbers graphically.

The entire process requires only three files:

• A C++ Program [.cpp]

• A data file [in this case, a .csv]

• An Excel spreadsheet [.xlsx]

For the sake of keeping things easy, it is best to keep these three files in the same folder.

The overall procedure is simple: A variable x is initialized with a value of 0. The C++ program squares this

number, and then stores the new value in variable y. The program then immediately outputs the value

of y to the data file and starts a new line. After the program writes the value to the data file, it then

proceeds to increment x. The process then repeats until all values have been written to the data file. The

Excel spreadsheet will be set up to take inputs from the data file in the form of cells, and a graph will be

generated to display these inputs.

The Program

#include<fstream> // fstream is required for data to be written to external files

#include<windows.h>

#include<math.h> //math.h is necessary to use the power function, use <cmath> with 2008 compiler

using namespace::std;

void main()

{

 int y; // x [declared later] will be squared and stored here

 ofstream output("data.csv",ios::out); // Declaring ofstream handle “output.” Using this handle

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbwill write argument to the file “data.csv.”

 for(int x=0; x<=5;++x)

 {

 y=pow(x,2); // raise x to the power of 2. Store value in variable y

 output << y; // write y to “data.csv”

 output << endl; // start a new line in “data.csv” following y

 }; // Go back to store additional values until all have been written.

 output.close(); // Close access to “data.csv.” Allows other programs to access this file.

 system("Graph.xlsx"); //OPTIONAL. This command opens file “Graph.xlsx”

};

The Data File

Assuming the above program was run properly, the values 0, 1, 4, 9, 16, 25 will have been sent to the

data file. The file should look like this:

The Excel Spreadsheet

Create a new Excel spreadsheet. Select cell A1, go to the “Data” tab, and press “Get External Data >>

From Text.” This will bring up a file select interface. Go to the folder which contains your data file,

“Data.csv,” and select it.

You will then be prompted with the “Text Import Wizard.” Because this example uses new lines as row

delimiters, just hit “Finish.” Hit “Ok” when the “Import Data” box appears. Your Excel spreadsheet

should now look like the data file did previously.

The next step is to ensure that the spreadsheet

always has up-to-date data. Highlight all of the

cells which contain input data [in this case,

A1:A6]. Go to the “Data” tab again, and select

“Properties.” Set the properties as they are

displayed on the right. These settings ensure that

the spreadsheet is updated every minute, and

every time the spreadsheet is opened.

Now that the data values are in the Excel sheet, they can be referenced for use by graphs. To do this,

press “Insert >> 2-D >> Line Chart,” right click the empty chart, and select the imported data as your

range.

After hitting “Ok,” the graph should be generated.

Ending Notes

• Multiple pieces of data can be output and stored in the data file at one time, so long as there is a

delimiter of some sort.

• Remember, all file names can be changed, as long as there is consistency.

• Make sure the data file is not open when being written to.

• Make sure Data Connectivity is always enabled in Excel. To do this, click the Office button in the upper

left hand corner of Excel, click Excel Options at the very bottom. Go to Trust Center, then Trust Center

Settings. Click External Content, and check off “Enable all data connections.”

0

5

10

15

20

25

30

1 2 3 4 5 6

Series1

