PCM Lab Activity

As part of this lab activity the student will be:

- ☐ Interfacing a microphone to an OP-AMP amplifier
- ☐ Designing a Low Pass Filter (LPF) with gain a proper cutoff frequency
- ☐ Interfacing a power amplifier to a speaker
- ☐ Interfacing with a Sample & Hold circuit
- ☐ Experiencing the digitization of speech
- ☐ Experiencing the reconstruction of speech
- Measurement and determination of quantizing noise
- □ Demonstrating the causes and prevention of aliasing

In this lab, students will build a PCM modulator and demodulator using Linear techniques. Basically, linear Analog to Digital (ADC) and linear Digital to Analog (DAC) integrated Circuits are used rather than the non-linear. These are the ADC0804 and the DAC0808 respectively.

PCM Lab Activity

- Design the Modulator-Demodulator system as per the given block diagram
- 2. Generate the schematic for your system (Identify all components and the connections thereof)
- 3. Simulate your system using either Circuit Maker, PSPICE, or Multisim (If an IC is not available in the simulator library use an equivalent component).
- 4. Build your system
 - a) Test your system using a sine wave for the analog input
 - b) Test your system using speech for the analog input signal
 - c) Demonstrate the Aliasing effect
 - d) Measure & determine the quantization error
- 5. Your circuit must be aesthetically pleasing
- 6. Generate a video of your project presenting the design process and demonstrating the outcome.
- 7. The project grading rubric is shown on the next page.

Enzo Paterno

PCM Lab Activity - Rubric

Working Outcomes	Percentage	Grade
Microphone Interface	5%	
Low Pass Filter amplifier	10%	
Sample & Hold Circuit	10%	
Analog to Digital Conversion	10%	
Digital to Analog Conversion	10%	
Speaker Interface	5%	
Circuit Aesthetics	10%	
Schematics	5%	
Circuit Simulations	5%	
Aliasing Demonstration	10%	
Level of Understanding	10%	
Video	10%	

Enzo Paterno

GRADE:

PCM Lab Activity

13

Transmitter Circuit

Linear ADC

O VEE = -15V

PCM Lab Activity

5

Receiver Circuit

Enzo Paterno

$x^{2} + \sqrt{2dx + 2ey + 10}$ $a = \pi r^{2}$

1st order LPF – OP-AMP Circuit

$$H(\omega) = \frac{V_{out}}{V_{in}} = -\frac{Z_2}{Z_1} = \frac{\frac{1}{2}R}{\frac{R}{2}jX_C//R_F}$$

$$H(\omega) = -\frac{R_F}{J\omega C} = \frac{R_F}{J\omega C} = \frac{R_F}{J\omega C} = \frac{R_F}{R \left[\frac{1 + J\omega R_F C}{J\omega C}\right]}$$

$$H(\omega) = \frac{R_F}{R} \frac{1}{1 + J\omega R_F C} \rightarrow \left| H(\omega) \right| = \frac{R_F}{R} \frac{1}{\sqrt{1 + \left(\omega R_F C\right)^2}}$$
Enzo Paterno

Stop-band

 $0.707V_{\mathrm{max}}$

Transducer Interfaces

Microphone Interface

Speaker Interface

