Station 1

Answer questions 1a - 1d. Color leaf one the color that corresponds to the answer that is used twice.

Outline the leaf in one of the other colors.

Polka-dot the leaf in the third color.

- A Red
- B Blue
- C Yellow
- D Purple
- E Orange

1a. Which of the following statements is true about the total number of reactants and the total number of products in this reaction?

$$C_5H_{12(1)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$$

A) 9 moles of reactants regroup to form 11 moles of product

- B)9 grams of reactants regroup to form 11 grams of product
- C)9 liters of reactants regroup to form 11 liters of product
- D)9 atoms of reactants regroup to form 11 atoms of product
- E)22.4 liters of reactants regroup to form 22.4 liters of product
- 1b) The combustion of propane (C_3H_8) produces CO_2 and H_2O :

$$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O$$

The reaction of 10 mol of 0_2 will produce mol of H_2O .

- A) 4.0
- B)10.0
- C) 2.5

D) 8.0

E) 1.0

1c) Lithium and nitrogen react to produce lithium nitride:

$$6Li_{(s)} + N_{2(g)} \rightarrow 2Li_3N_{(s)}$$

How many moles of N_2 are needed to react with 0.500 mol of lithium?

- A) 3.00
- B) 0.500
- C) 0.167
- D) 1.50

E) 0.0833

1d) What is conserved in all chemical reactions?

- A)only mass
- B)only mass and moles
- C)only mass, moles, and molecules
- D)only mass, moles, molecules and volume

E) atoms and mass

Station 2 - Color leaf 2 the color that corresponds to the answer.

A - Red

B - Blue

C - Yellow

D - Purple

E - Orange

2)How many moles of H_3PO_4 are produced when 71.0 g P_4O_{10} reacts completely to form H_3PO_4 ? $P_4O_{10(s)} + 6 H_2O_{(l)} \rightarrow 4 H_3PO_{4(aq)}$

A)0.0635 mol

B) 1.00 mol

C)4.00 mol

D)16.0 mol

E)98.0 mol

$$\frac{71.0 g P_4 O_{10}}{1} x \frac{1 mole P_4 O_{10}}{283.886 g P_4 O_{10}} x \frac{4 moles H_3 P O_4}{1 mole P_4 O_{10}} = 1.00 moles H_3 P O_4$$

Station 3

Color leaf 3 the answer for question 3a. Polka-dot leaf 3 the answer to question 3b.

A - Red

B - Blue

C - Yellow

D - Purple

E - Orange

3a) The combustion of ammonia in the presence of excess oxygen yields NO_2 and H_2O :

4 NH3(g) + 7 O2(g)
$$\rightarrow$$
 4 NO2(g) + 6 H2O(g)

The combustion of 28.8 g of ammonia consumes _____ g of oxygen.

A) 94.7

B) 54.1

C) 108

D) 15.3

E) 28.8

$$\frac{28.8 \, g \, NH_3}{1} \, x \, \frac{1 \, mole \, NH_3}{17.031 \, g \, NH_3} \, x \, \frac{7 \, moles \, O_2}{4 \, mole \, NH_3} \, x \, \frac{31.998 \, g \, O_2}{1 \, mole \, O_2} = \, 94.7 \, g \, O_2$$

3b) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

 $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$

A 7.1-g sample of N_2 requires _____ g of H_2 for complete reaction.

A) 0.51

B) 0.76

C) 1.2

D) 1.5

E) 17.2

$$\frac{7.1 g N_2}{1} x \frac{1 mole N_2}{28.014 g N_2} x \frac{3 moles H_2}{1 mole N_2} x \frac{2.016 g H_2}{1 mole H_2} = 1.5 g H_2$$

Station 4 - Color leaf 4 the color that corresponds to the answer.

- A Red
- B Blue
- C Yellow
- D Purple
- E Orange
- 4) Iron(III) oxide is formed when iron combines with oxygen in the air. How many grams of Fe₂O₃ are formed when 16.7 g of Fe reacts completely with oxygen?

4 Fe_(s) + **3** O_{2(g)}
$$\rightarrow$$
 2 Fe₂O_{3(s)}

- A) 12.0 g
- B) 23.9 g
- C) 47.8 g
- D) 95.6 g
- E) 267 g

$$\frac{16.7 \ g \ Fe}{1} \ x \ \frac{1 \ mole \ Fe}{55.933 \ g \ Fe} \ x \ \frac{2 \ moles \ Fe_2 O_3}{4 \ moles \ Fe} x \ \frac{159.863 \ g \ Fe_2 O_3}{1 \ mole \ Fe_2 O_3} = \ 23.9 \ g \ Fe_2 O_3$$

Station 5 - Color leaf 5 the color that corresponds to the answer.

- A Red
- B Blue
- C Yellow
- D Purple
- E Orange
- 5) Aluminum reacts with sulfuric acid to produce aluminum sulfate and hydrogen gas. How many grams of aluminum sulfate would be formed if $250 \ g \ H_2SO_4$ completely reacted with aluminum?

$$Al_{(s)} + {\color{red}3} H_2SO_{4(aq)} \rightarrow Al_2(SO_4)_{3(aq)} + {\color{red}3} H_{2(g)}$$

- A) 0.85 g
- B) 290 g
- C) 450 g
- D) 870 g
- E) 2600 g

$$\frac{250\,g\,H_2SO_4}{1}\,x\,\frac{1\,mole\,g\,H_2SO_4}{98.078\,g\,H_2SO_4}\,x\,\frac{1\,mole\,Al_2(SO_4)_3}{3\,moles\,H_2SO_4}x\,\frac{342.15\,g\,Al_2(SO_4)_3}{1\,mole\,Al_2(SO_4)_3} = \,290\,g\,Al_2(SO_4)_3$$

Station 6 - Color leaf 6 the color that corresponds to the answer.

A - Red

B - Blue

C - Yellow

D - Purple

E - Orange

6) How many liters of hydrogen gas are needed to react with CS2 to produce 2.50 L of CH4, at STP?

$$4 \text{ H}_{2(g)} + \text{CS}_{2(1)} \rightarrow \text{CH}_{4(g)} + 2 \text{ H}_2\text{S}_{(g)}$$

- A) 2.50 L
- B) 0.625 L
- C) 5.00 L
- D) 7.50 L
- E) 10.0 L

$$\frac{2.50 L CH_4}{1} \times \frac{4 L H_2}{1 L CH_4} = 10.0 L H_2$$

Station 7

Color leaf 7 the answer for question 7a. Polka-dot leaf 7 the answer to question 7b.

A - Red

B - Blue

C - Yellow

D - Purple

E - Orange

7a) Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements:

$$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$$

How many moles of N₂ are produced by the decomposition of 5.25 mol of sodium azide?

A) 5.25

B) 8.64

C) 7.88

D) 0.960

E) 1.44

$$\frac{5.25 \, mole \, NaN_3}{1} \, x \, \frac{3 \, moles \, N_2}{2 \, moles \, NaN_3} = 7.88 \, moles \, N_2$$

7b)How many moles of glucose, $C_6H_{12}O_6$, can be burned when 60.0 mol of oxygen is available? $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(1)$

A)0.938 mol

B) 10 mol

C)60 mol

D)120mol

E)301 mol

$$\frac{60.0 \text{ mole } O_2}{1} \times \frac{1 \text{ mole } C_6 H_{12} O_6}{6 \text{ moles } O_2} = 10.0 \text{ mole } C_6 H_{12} O_6$$

Station 8 - Color leaf 8 the color that corresponds to the answer.

- A Red
- B Blue
- C Yellow
- D Purple
- E Orange
- 8) How many liters of NH₃ are needed to react completely with 30.0 L of NO (at STP)?

4
$$NH_{3(g)}$$
 + **6** $NO_{(g)} \rightarrow$ **5** $N_{2(g)}$ + **6** $H_{2}O_{(g)}$

- A) 5.0 L
- B) 20.0 L
- C) 7.5 L
- D) 120.0 L
- E) 180.0 L

$$\frac{30.0 L NO}{1} \times \frac{4 L NH_3}{6 L NO} = 20.0 L NH_3$$

Station 9 - Color leaf 9 the color that corresponds to the answer that occurs the most among the following three questions.

- A Red
- B Blue
- C Yellow
- D Purple
- E Orange
- 9a) Which of the following is NOT a true statement concerning limiting and excess reagents?
- A) The amount of product obtained is determined by the limiting reagent.
- B) A balanced equation is necessary to determine which reactant is the limiting reagent.
- C) Some of the excess reagent is left over after the reaction is complete.
- D) The reactant that has the smallest given mass is the limiting reagent.
- E) Adding more of the limiting reagent to the reaction chamber will cause more product to be produced.
- 9b) Which of the following is **NOT** a true statement about "yield"?
- A) The value of the actual yield must be given in order for the percent yield to be calculated.
- B) The actual yield is often less than the theoretical yield.
- C) The percent yield is the ratio of the actual yield to the theoretical yield.
- D) The actual yield may be different from the theoretical yield because reactions do not always go to completion.
- E) The actual yield may be different from the theoretical yield because insufficient limiting reagent was used.
- 9c) Which of the following is not a reason why actual yield is less than theoretical yield?
- A) Impure reactants present
- B) Competing side reactions
- C) Loss of product during purification
- D) Conservation of mass
- E) None of these

Station 10 - Color leaf 10 the color that corresponds to the answer.

- A Red
- B Blue
- C Yellow
- D Purple
- E Orange
- 10) What is the maximum mass in grams of NH_3 that can be produced by the reaction of 1.0 g of N_2 with 3.0 g of H_3 via the equation below?

$$N_{2(g)} + 3 H_{2(g)} \rightarrow 2 NH_{3(g)}$$

- A) 2.0
- B) 1.2
- C) 0.61
- D) 17
- E) 4.0

$$\frac{1.0 g N_2}{1} x \frac{1 mole N_2}{28.014 g N_2} x \frac{2 mole NH_3}{1 moles N_2} x \frac{17.031 g NH_3}{1 mole NH_3} = 1.2 g NH_3$$

$$\frac{3.0 g H_2}{1} x \frac{1 mole H_2}{2.016 g H_2} x \frac{2 mole NH_3}{3 moles H_2} x \frac{17.031 g NH_3}{1 mole NH_3} = 17 g NH_3$$

Station 11 - Color leaf 11 the color that corresponds to the answer.

- A Red
- B Blue
- C Yellow
- D Purple
- E Orange
- 11) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

$$S_{(s)} + 3F_{2(g)} \rightarrow SF_{6(g)}$$

The maximum amount of SF_6 that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of fluorine is _____ g.

- A) 12
- B) 3.2
- C) 5.8
- D) 16
- E) 8.0

$$\frac{3.5 g S}{1} x \frac{1 mole S}{32.066 g S} x \frac{1 mole SF_6}{1 mole S} x \frac{146.054 g SF_6}{1 mole SF_6} = 16 g SF_6$$

$$\frac{4.5 g F_2}{1} x \frac{1 mole F_2}{37.996 g F_2} x \frac{1 mole SF_6}{3 moles F_2} x \frac{146.054 g SF_6}{1 mole SF_6} = 5.8 g SF_6$$

Station 12 - Color leaf 12 the color that corresponds to the answer.

A - Red

B-Blue

C - Yellow

D - Purple

E - Orange

12) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide: $CaO_{(s)} + H_2O_{(l)} \rightarrow Ca(OH)_{2 (s)}$

A 4.50-g sample of CaO is reacted with 4.34 g of $\rm H_2O$. How many grams of water remain after completion of reaction?

A) 0.00

B) 0.00892

C) 2.90

D) 1.04

E) 0.161

$$\frac{4.50 \ g \ CaO}{1} \ x \ \frac{1 \ mole \ CaO}{56.077 \ g \ CaO} \ x \ \frac{1 \ mole \ H_2O}{1 \ mole \ CaO} x \ \frac{18.015 \ g \ H_2O}{1 \ mole \ H_2O} = \ 1.4456 \ g \ H_2O \ was \ used$$

Amount of water left =
$$4.34 g - 1.4456 g = 2.89 g H_2 0$$

Station 13 - Color leaf 13 the color that corresponds to the answer.

A-Red

B - Blue

C - Yellow

D - Purple

E - Orange

13) A 3.82-g sample of magnesium nitride is reacted with 7.73 g of water.

$$Mg_3N_2 + 3 H_2O \rightarrow 2 NH_3 + 3 MgO$$

The actual yield of MgO is 3.60 g. What is the percent yield in the reaction?

A) 94.5

B) 78.7

C)46.6

D) 49.4

E) 99.9

$$\frac{3.82\ g\ Mg_3N_2}{1}\ x\ \frac{1\ mole\ Mg_3N_2}{100.929\ g\ Mg_3N_2}\ x\ \frac{3\ mole\ MgO}{1\ mole\ Mg_3N_2}\ x\ \frac{40.304\ g\ MgO}{1\ mole\ MgO} =\ 4.54\ g\ NH_3$$

$$\frac{7.73\ g\ H_2O}{1}\ x\ \frac{1\ mole\ H_2O}{18.015\ g\ H_2O}\ x\ \frac{3\ moles\ MgO}{3\ moles\ H_2O}\ x\ \frac{40.304\ g\ MgO}{1\ mole\ MgO} =\ 17.3\ g\ MgO$$

$$Percent\ Yield\ =\ \frac{3.60\ g\ MgO}{4.54\ g\ MgO}\ x\ 100 = 79.29\%$$

Station 14 - Color the outside circles the color that corresponds to the answer.

A-Red

B - Blue

C - Yellow

D - Purple

E - Orange

14) Hydrogen gas is produced when zinc reacts with hydrochloric acid. If the actual yield of this reaction is 85%, how many grams of zinc are needed to produce 112 L of H_2 at STP?

$$Zn_{(s)} + 2HCl_{(aq)} \rightarrow ZnCl_{2(s)} + H_{2(g)}$$

A) 2.2 g

B) 95 g

C) 180 g

D) 280 g

E) 380 g

Percent yield =
$$\frac{actual\ yield}{theoretical\ yield} \times 100$$

The problem states the actual yield = $112 L H_2$. However, the theoretical yield is the number needed to determine the amount of zinc that was reacted. Using the percent yield equation, solve for the theoretical yield.

Theoretical yield =
$$\frac{actual\ yield}{percent\ yield} \times 100 = \frac{112\ L\ H_2}{85\%} \times 100 = 132\ L\ H_2$$

132 L H2 represents the amount of hydrogen that was ACTUALLY reacted but only 85% of it resulted in making the product.

$$\frac{132 L H_2}{1} x \frac{1 mole H_2}{22.4 L H_2} x \frac{1 mole Zn}{1 mole H_2} x \frac{65.39 g Zn}{1 mole Zn} = 385 g Zn$$