Reteaching 7-1

Roots and Radical Expressions

OBJECTIVE: Simplifying radical expressions

MATERIALS: None

- For any real numbers a and b, and any positive integer n, if $a^n = b$, then a is an nth root of b.
- For any negative real number a, $\sqrt[n]{a^n} = |a|$ when n is even.

Examples

Simplify $\sqrt[3]{1000x^3y^9}$.

Simplify $\sqrt[4]{\frac{256g^8}{h^4k^{16}}}$.

$$\sqrt[4]{\frac{256g^8}{h^4k^{16}}} = \sqrt[4]{\frac{4^4(g^2)^4}{h^4(k^4)^4}}$$
$$= \sqrt[4]{\left(\frac{4g^2}{hk^4}\right)^4} = \frac{4g^2}{|h|k^4}$$

The absolute value symbols are needed to ensure the root is positive when h is negative. Note that $4g^2$ and k^4 are never negative.

Exercises

Simplify. Use absolute value symbols when needed.

1.
$$\sqrt{36x^2}$$

2.
$$\sqrt[3]{216y^3}$$

3.
$$\sqrt{\frac{1}{100x^2}}$$

4.
$$\frac{\sqrt{x^{20}}}{\sqrt{v^8}}$$

5.
$$\sqrt[3]{\frac{(x+3)^3}{(x-4)^6}}$$

6.
$$\sqrt[5]{x^{10}y^{15}z^5}$$

7.
$$\sqrt[3]{\frac{27z^3}{(z+12)^6}}$$

8.
$$\sqrt[4]{2401x^{12}}$$

9.
$$\sqrt[3]{\frac{1331}{x^3}}$$

10.
$$\sqrt[4]{\frac{(y-4)^8}{(z+9)^4}}$$

11.
$$\sqrt[3]{\frac{a^6b^6}{c^3}}$$

12.
$$\sqrt[3]{-x^3y^6}$$