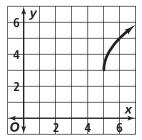
Reteaching 7-8

Graphing Square Root and Other Radical Functions

OBJECTIVE: Graphing radical functions

MATERIALS: None

The graph of $y = a\sqrt{x - h} + k$ is a translation h units horizontally and k units vertically of $y = a\sqrt{x}$. The value of a determines a vertical stretch or compression of $y = \sqrt{x}$.


Example

Graph
$$y = 2\sqrt{x-5} + 3$$
.

$$y = 2\sqrt{x-5} + 3$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$a = 2 \qquad h = 5 \ k = 3$$

Translate the graph of $y = 2\sqrt{x}$ right five units and up three units. The graph of $y = 2\sqrt{x}$ looks like the graph of $y = \sqrt{x}$ with a vertical stretch by a factor of 2.

Exercises

Graph each function.

1.
$$y = \sqrt{x-4} + 1$$

3.
$$y = \sqrt{x+1}$$

5.
$$y = 2\sqrt{x-1}$$

7.
$$y = -\sqrt{x} + 1$$

9.
$$y = 3\sqrt{x} + 2$$

11.
$$y = \sqrt{x-1} - 2$$

2.
$$y = \sqrt{x} - 4$$

4.
$$y = -\sqrt{x+2} - 3$$

6.
$$y = -2\sqrt{x+3} + 4$$

8.
$$y = \sqrt{x+3} - 4$$

10.
$$y = -\sqrt{x-2}$$

12.
$$y = -\sqrt{x+4} - 1$$