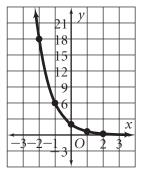
Reteaching 8-2

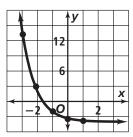
OBJECTIVE: Graphing exponential functions

MATERIALS: Graphing calculator, graph paper


Example

Sketch the graph of $y = 2\left(\frac{1}{3}\right)^{x+1} - 4$ as a translation of $y = 2\left(\frac{1}{3}\right)^x$.

- **Step 1:** Determine the base of the function $y = 2\left(\frac{1}{3}\right)^x$. Since b < 1, the graph will represent exponential decay.
- **Step 2:** Make a table. Find more values if necessary to get a good picture of the graph.


x	$y=2\left(\frac{1}{3}\right)^{x}$	у
-2	$2\left(\frac{1}{3}\right)^{-2} = 2(9)$	18
-1	$2\left(\frac{1}{3}\right)^{-1} = 2(3)$	6
0	$2\left(\frac{1}{3}\right)^0 = 2(1)$	2
1	$2\left(\frac{1}{3}\right)^1 = 2\left(\frac{1}{3}\right)$	<u>2</u> 3
2	$2\left(\frac{1}{3}\right)^2 = 2\left(\frac{1}{9}\right)$	<u>2</u>

Step 3: Use the values for *x* and *y* from the table to graph the function.

Step 4: For $y = 2\left(\frac{1}{3}\right)^{x+1} - 4$, h = -1 and k = -4. Shift the graph of the parent function above 1 unit left and 4 units down. The horizontal asymptote shifts down as well, from y = 0 to y = -4.

Step 5: Use a graphing calculator to check your graph.

Exercises

Graph each exponential function.

1.
$$y = \left(\frac{1}{5}\right)^x$$

2.
$$y = 3^x + 1$$

3.
$$y = 5^x$$

4.
$$y = -\left(\frac{1}{2}\right)^x$$

5.
$$y = -\left(\frac{1}{2}\right)^x + 4$$

6.
$$y = \left(\frac{1}{4}\right)^x$$

7.
$$y = \left(\frac{1}{4}\right)^{x-}$$

8.
$$y = 4^x + 1$$

9.
$$y = -(2)^x$$