Reteaching 8-5

OBJECTIVE: Using logarithms to solve

MATERIALS: None

When solving exponential equations, use inverse operations to isolate the variable. Remember that the inverse of raising to an exponent is taking the logarithm.

Class_____

Example Solve $7 - 5^{2x-1} = 4$. $7 - 5^{2x-1} = 4$ $-5^{2x-1} = -3$ First isolate the term that has the variable in the exponent. Begin by subtracting 7 from each side. $5^{2x-1} = 3$ ← Multiply each side by -1. $\log_5 5^{2x-1} = \log_5 3$ - Since the variable is in the exponent, use logarithms. Take log₅ of each side since 5 is the base of the exponent. $(2x - 1)\log_5 5 = \log_5 3$ Use the Power Property of Logarithms. $2x - 1 = \log_5 3$ \leftarrow Simplify. (Recall that $\log_b b = 1$.) $2x - 1 = \frac{\log 3}{\log 5}$ - Apply the Change of Base Formula. $2x = \frac{\log 3}{\log 5} + 1$ - Add 1 to each side.

 $x \approx 0.84$ - Use a calculator to find a decimal approximation.

Exercises

12

Solve each equation. Round the answer to the nearest hundredth.

1. $2^x = 5$	2. $10^{2x} = 8$	3. $5^{x+1} = 25$
4. $2^{x+3} = 9$	5 $3^{2x-3} = 7$	6. $4^x - 5 = 3$
7. $5 + 2^{x+6} = 9$	8. $4^{3x} + 2 = 3$	9. $1 - 3^{2x} = -5$
10. $2^{3x} - 2 = 13$	11. $5^{2x+7} - 1 = 8$	12. $7 - 2^{x+7} = 5$

Pearson Education, Inc., publishing as Pearson Prentice Hall.

Exponential and Logarithmic Equations